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On Stability of Some General Random Dynamical
System
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We consider a new random dynamical system which generalizes Markov pro-
cesses corresponding to iterated function systems and Poisson driven stochastic
differential equations. It can be used as a description of many physical and bio-
logical phenomena. Under the suitable assumption will be proved its stability.
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1. INTRODUCTION

In this paper we propose a new model generalizing Poisson stochastic
differential equations and iterated function systems. A Poisson process is
one of the fundamental descriptions for physical and biological phenom-
ena—these phenomena are generally described by stochastic differential
equations with Poisson drift rather than the Wiener drift (see refs. 4, 7,
14, 26). In fact, Wiener processes may be obtained when we pass to the
limit with intensivity of the Poisson process. However, it seems that we
obtain more realistic models with Poisson drift. A large class of applica-
tions of such models, both in physics and biology, is worth mentioning
here: the short noise, the photoconductive detectors, the growth of the size
of structural population, the motion of relativistic particles, both fermions
and bosons, and many others (see refs. 7, 14, 16, 17, 26). In 1984 Gaveau
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et al.(8) derived the Dirac equation using the formulation of Poisson pro-
cess.

On the other hand, it should be noted that most Markov chains,
appear among other things, in statistical physics, and may be represented
as iterated function systems (see ref. 15). They are also intensively studied
as a mathematical model of learning and random walks and have turned
out to be a very useful tool in the theory of cell cycles (see refs. 18, 19,
29 and references therein). Recently, iterated function systems have been
used in studying invariant measures for the Ważewska partial differential
equation which describes the process of reproduction of the red blood cells
(see ref. 21). Similar nonlinear first-order partial differential equations fre-
quently appear in hydrodynamics (see ref. 28).

Today iterated function systems are considered mainly because of
their close connection to fractals and semifractals. Indeed, a fractal set
(analogously semifractal) may be obtained as a support of an invariant
measure for such systems (see refs. 19, 20).

We formulate criterion for stability. There is excellent literature
devoted to such problems (see ref. 25). Different classes of Markov pro-
cesses have been studied e.g. random dynamical systems based on skew
product flows and piecewise-deterministic Markov processes introduced
by Davis (see refs. 1, 3). Our model generalizes the latter. Besides phys-
ics and biology there is an enormous variety of their applications in
engineering systems, operation research, management science, econom-
ics and applied probability (for more details see ref. 3 and references
therein).

Usually the proof of stability is based on the theory of Meyn and
Tweedie presented in ref. 25 which, to the best of our knowledge, is not
well adapted to general Banach spaces. In fact, it is extremely difficult to
ensure that the process under consideration satisfies some ergodic proper-
ties on a compact set. However assumption of compactness is restrictive
if we want to apply our model in physics and biology. Indeed, the phase
space is usually one of the spaces of functions and the above assumption
is therefore not satisfied. In our paper, we apply the theory of concentrat-
ing Markov operators developed in ref. 29.

Let (X,‖ · ‖) be a separable Banach space. Let (�,�,P) be a proba-
bility space and let (τn)n�0 be a sequence of random variables τn:�→R+
with τ0 = 0 and such that the increments �τn = τn − τn−1, n∈N, are inde-
pendent and have the same density g(t)=λe−λt .

We have given a finite sequence of semidynamical systems �i : R+ ×
X →X, i ∈ I ={1, . . . ,N}, a probability vector pi : X → [0,1], i ∈ I and a
matrix of probabilities [pij ]i,j∈I , pij :X → [0,1], i, j ∈ I.
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Let S be a compact metric space. By F we define the Borel σ -algebra
on S. Let (ζn)n�0 be a sequence of random elements ζn:�→S, n∈N with
the same distribution κ, i.e. κ(A)=P

(
ζ−1
n (A)

)
for A∈F and n∈N. Obvi-

ously κ(S)=1. We assume that (ζn)n�0 is independent on (τn)n�0. Finally
let q:S ×X →X be a continuous function. We write qs =q(s, ·) for s ∈S.

Now we define X-valued stochastic process (ξn)n�0 in the following
way. We choose an initial point x ∈X and we randomly select an integer
i ∈I in such a way that probability of choosing i is equal to pi(x). Having
x and i we define

ξ1 =qζ1

(
�i(τ1, x)

)
.

Now we choose i1 ∈ I in such a way that the probability of chosing i1 is
equal to pii1(ξ1) and is independent upon the variable ζ1. Then we define

ξ2 =qζ2

(
�i1(τ2 − τ1, ξ1)

)
.

Finally, given ξn, n � 2, we choose in in such a way that the prob-
ability of choosing in is equal to pin−1in (ξn) and is independent upon
ζ1, . . . , ζn, ξ1, . . . , ξn. Then we define

ξn+1 =qζn+1

(
�in(τn+1 − τn, ξn)

)
.

We are interested in the evolution of distributions corresponding to
this random dynamical system. Namely, let µ be the distribution of the
initial random vector x. For n∈N we denote by µn the distribution of ξn,
i.e.

µn(A)=P
(
ξn ∈A

)=
∫

X

P
(
ξn(x)∈A

)
µ(dx),

where ξn(x) means the process started from the initial point x and A is an
arbitrary Borel set in X. We will prove that there exists a distribution µ∗
on X such that µn →µ∗ (weakly) as n→∞ for arbitrary initial distribu-
tion µ on X.

The examples below show that our model generalizes some very
important and widely studied objects, namely dynamical systems gener-
ated by iterated function systems and Poisson driven stochastic differential
equations.

Example 1. Iterated funcion systems.
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Let X be a separable Banach space, wi :X →X, i ∈ I , continuous func-
tions and let (p1, . . . , pN) be a probability vector, i.e. pi >0,

∑
i∈I pi =1.

Assume that �i(t, x)=x for i ∈I , t ∈R+ and x ∈X. Moreover, assume
that S = I , F = 2I and κ({i})=pi . Finally, assume that q(i, x)=wi(x) for
i ∈ I and x ∈X.

Let µ be the distribution of the initial random vector x. Simple cal-
culation shows that the distribution µn of the random vector ξn is given
by

µn(A)=
∑

i1,...,in∈I

pi1 · · · · ·pinµ
((

win ◦ · · · ◦wi1

)−1
(A)

)
.

But this means that µn = P nµ, where P is the well known (see refs.
18, 19, 29) transition operator corresponding to iterated function system
{(wi,pi); i ∈ I }. It is of the form

Pµ=
N∑

i=1

piµ◦w−1
i .

Example 2. Poisson driven stochastic differential equations.

Consider a stochastic differential equation of the form

dξ =a(ξ)dt +b(ξ)dp for t >0

with the initial condition

ξ(0)= ξ0,

where a, b : X → X are Lipschitzian functions, X is a separable Banach
space,

(
p(t)

)
t�0 is a Poisson process and the initial condition ξ0 is a ran-

dom variable on � with values in X, independent on
(
p(t)

)
t�0.

Let S =I ={1} and let �1(t, x)=�(t, x) be the unique solution of the
Cauchy problem

du

dt
=a(u(t)), u(0)=x.
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Moreover, let q1(x) = q(x) = x + b(x). It is easy to check that µn = P nµ,
n∈N, where P is the transition operator corresponding to the above sto-
chastic equation and given by

Pµ(A)=
∫

X

∫

R+
λe−λt1A(q(π(t, x)))dtµ(dx).

(Here 1A stands for the characteristic function of A.)
The paper is divided into five sections. Section 2 contains further

notation and some known facts concerning asymptotic stability of Markov
operators crucial for our considerations. In Section 3 we state all necessary
hypotheses and reformulate our problem in a more convenient form. Sec-
tion 4 contains some technical lemmas. The main results are contained in
the last section. For related results see refs. 1–3, 10–13, 18, 22–24, 27, 29–
31. The basic facts on Markov processes and stochastic differential equa-
tions can be found in refs. 2, 5, 7, 19.

2. NOTATION AND SOME USEFUL FACTS

Let (X, �) be a complete separable metric space. By B(x, r) we denote
the open ball with center at x and radius r. For a subset A of X, cl A,
diam A, and 1A stands for the closure of A, diameter of A and the char-
acterisic function of A, respectively.

By B(X) we denote the σ -algebra of Borel subsets of X and by M=
M(X) the family of all finite Borel measures on X. By M1 =M1(X) we
denote the space of all µ ∈ M such that µ(X) = 1 and by Ms the space
of all finite signed Borel measures on X. The elements of M1 are called
distributions.

As usual, by B(X) we denote the space of all bounded Borel measur-
able functions f :X→R and by C(X) the subspace of all continuous func-
tions. Both spaces are considered with the supremum norm ‖ · ‖0.

For f ∈B(X) and µ∈Ms we write

<f,µ> =
∫

X
f (x)µ(dx).

We introduce in Ms the Fortet–Mourier norm ‖ · ‖� (see ref. 6) given by

‖µ‖� = sup{|<f,µ> | :f ∈F�} for µ∈Ms ,

where F� is the set of all f ∈C(X) such that |f (x)|�1 and |f (x)−f (y)|�
�(x, y) for x, y ∈X.
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We say that a sequence (µn), µn ∈M, converges weakly to a measure
µ∈M if

lim
n→∞<f,µn > = <f,µ> for every f ∈C(X).

It is well known (see ref. 5) that the convergence in the Fortet–Mourier
norm ‖ · ‖� is equivalent to the weak convergence.

An operator P :M→M is called a Markov operator if

P(λ1µ1 +λ2µ2)=λ1Pµ1 +λ2Pµ2 for λ1, λ2 ∈R+ and µ1, µ2 ∈M

and

Pµ(X)=µ(X) for µ∈M.

A linear operator U :B(X)→B(X) is called dual to P if

<Uf,µ>=<f,Pµ> for f ∈B(X) and µ∈M.

A Markov operator P is called a Feller operator if it has a dual
operator U such that

Uf ∈C(X) for f ∈C(X).

An operator P : M → M is called essentially nonexpansive if there
exists a metric �̂ equivalent to � such that P is nonexpansive with respect
to the norm ‖ · ‖�̂, i.e.

‖Pµ1 −Pµ2‖�̂ �‖µ1 −µ2‖�̂ for µ1,µ2 ∈M1.

It can be proved that every essentially nonexpansive Markov operator
is a Feller operator (see ref. 29).

A measure µ∗ is called invariant (or stationary) with respect to P if
Pµ∗ = µ∗. A Markov operator P is called asymptotically stable if there
exists a stationary measure µ∗ ∈M1 such that

lim
n→∞P nµ=µ∗ for every µ∈M1.
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Obviously a measure µ∗ satisfying the above condition is unique.
A sequence of distributionss (µn) is called tight if for every ε>0 there

exists a compact set K ⊂X such that µn(K)�1− ε for every n∈N.
It is well known (see refs. 2, 5) that every tight sequence of distribu-

tions contains a weakly convergent subsequence.
We say that a Markov operator P : M→M is tight if for every µ∈

M1 the sequence of iterates (P nµ) is tight.
We denote by Cε(X), ε > 0, (Cε for abbreviation), the family of all

closed sets C for which there exists a finite set {x1, x2, . . . , xn}⊂X (ε-net)
such that C ⊂⋃n

i=1 B(xi, ε).
An operator P is called semi-concentrating if for every ε>0 there exist

C ∈Cε(X) and θ >0 such that

lim inf
n→∞ P nµ(C)>θ for µ∈M1. (2.1)

Proposition 2.1 (ref. 23). Let P be a nonexpansive Markov oper-
ator. Assume that for every ε > 0 there exists a number θ > 0 having the
following property: for every pair of measures µ1,µ2 ∈ M1 there exist a
Borel subset A of X with diam A� ε and a number n0 ∈N such that

P n0µk(A)>θ for k =1,2.

Then

lim
n→∞‖P nµ1 −P nµ2‖� =0 for every µ1,µ2 ∈M1.

For µ∈M1 we consider the limit set:

L(µ)=
{
ν ∈M1 : there exists (nk)⊂ (n)

such that lim
k→∞

‖P nkµ−ν‖� =0
} (2.2)

and

L(M1)=
⋃

µ∈M1

L(µ). (2.3)

Proposition 2.2 (ref. 29). Let P be a nonexpansive and semi-con-
centrating Markov operator. Then
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(i) P has an invariant measure;

(ii) L(µ) �=∅ for arbitrary µ∈M1;

(iii) L(M1) is tight.

Finally, we introduce the class � of functions ϕ: R+ → R+ satisfying
the following conditions:

(i) ϕ is continuous and ϕ(0)=0;

(ii) ϕ is nondecreasing and concave;

(iii) ϕ(x)>0 for x >0 and limx→∞ ϕ(x)=∞.

By �0 we denote the family of all functions satisfying conditions (i)
and (ii). Observe that for every ϕ ∈ � the function ρϕ = ϕ ◦ ρ is again a
metric on X. Moreover ρϕ is equivalent to ρ. For notational convenience
we write Fϕ and ‖ · ‖ϕ in the place of F�ϕ and ‖ · ‖�ϕ , respectively.

Proposition 2.3 (ref. 23). Assume that a function w ∈ �0 satisfies
the Dini condition

∫ ε

0

w(t)

t
dt <∞ for some ε >0. (2.4)

Let a ∈ [0,1). Then the inequality

w(t)+ϕ(at)�ϕ(t) for t �0 (2.5)

admits a solution of �.

3. ASSUMPTIONS AND REFORMULATION OF THE PROBLEM

Assume that we have given the system (�,q,p) on a separable
Banach space defined in Section 1. Recall that �i : R+ × X → X, i ∈ I , is
a semidynamical system, i.e.

�i(0, x)=x for every i ∈ I, x ∈X (3.1)

and

�i(s + t, x)=�i(s,�i(t, x)) for every s, t ∈R+, i ∈ I and x ∈X.

(3.2)
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We assume that �i :R+ ×X→X, i ∈I are continuous and that there exists
x∗ ∈X such that

∫

R+
e−λt‖�i(t, x∗)−x∗‖ dt <∞ for i ∈ I. (3.3)

Moreover we assume that the functions pij , i, j ∈I , satisfy the follow-
ing condition

N∑

j=1

|pij (x)−pij (y)|�w(‖x −y‖) for x, y ∈X, i ∈ I, (3.4)

where the function w ∈�0 satisfies condition (2.4) and

γ = inf
{
pij (x) : i, j ∈ I, x ∈X

}
>0. (3.5)

Further we assume that there exist constants L � 1 and α ∈ R such
that

N∑

j=1

pij (y)‖�j(t, x)−�j(t, y)‖�Leαt‖x −y‖ for x, y ∈X, i ∈ I.

(3.6)

Finally we assume that there exists a constant Lq >0 such that
∫

S

‖qs(x)−qs(y)‖κ(ds)�Lq‖x −y‖ for x, y ∈X. (3.7)

Let (τn)n�0 and (ζn)n�0 be sequences of random variables introduced
in Section 1. Let

(
ξn

)
n�0 be the corresponding random dynamical system

described in introduction. This process is not Markovian. We extend the
process (ξn)n�0 in such a way that the new process becomes Markovian.
In this purpose consider the space X× I endowed with the metric ρ given
by

ρ
(
(x, i), (y, j)

)=‖x −y‖+ρ0(i, j) for x, y ∈X, i, j ∈ I, (3.8)

where

ρ0(i, j)=
{

c, if i �= j,

0, if i = j
(3.9)

with the constant c suitably choosen.
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Let (ηn)n�0 be a sequence of random elements ηn :�→ I , n∈N, such
that

P
(
η0 = i | ξ0 =x

)=pi(x)

and

P
(
ηn = j | ηn−1 = i, ξn =x

)=pij (x) for n=1,2, . . .

Assume that (ηn)n�0 is independent upon (τn)n�0 and that for every n∈N

the random variables ζ1, . . . , ζn−1, η1, . . . , ηn−1 are also independent.
Given an initial random variable ξ0 we consider the random process

(ξn)n�0 defined by the formula

ξn =qζn

(
�ηn−1(�τn, ξn−1)

)
for n=1,2, . . .

Now we consider a stochastic process
(
ξn, ηn

)
n�0. Clearly

(
ξn, ηn

)
: � →

X × I . It is easy to check that this process admits the Markov property.
Let µ0 be the distribution of the initial random variable (ξ0, η0), i.e.

µ0(A)=P
(
(ξ0, η0)∈A) for A∈B(X × I ).

For n∈N we denote by µn the distribution of (ξn, ηn), i.e.

µn(A)=P
(
(ξn, ηn)∈A

)
for A∈B(X × I ).

Proposition 3.1. There exists a Feller operator P : M(X × I ) →
M(X × I ) such that

µn+1 =Pµn for every n∈N. (3.10)

Moreover, the operator P is given by the formula

Pµ(A) =
N∑

j=1

∫

X×I

∫ ∞

0

∫

S

λe−λt (3.11)

·1A

(
qs

(
�j(t, x)

)
, j

)
pij (x) κ(ds) dt µ(dx di)
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and its dual operator U by the formula

Uf (x, i)=
N∑

j=1

∫ +∞

0

∫

S

f
(
qs

(
�j(t, x)

)
, j

)
pij (x)λe−λtκ(ds) dt. (3.12)

Proof. The proof is standard and we only give the main ideas of it.
Let (x, i)∈X × I be given and let f ∈C(X × I ). Let E denote the mathe-
matical expectation with respect to the probability P. We have

E
(
f

(
ξn+1, ηn+1

))=
∫

X×I

f (x, i)µn+1(dx di)= <f,µn+1 >. (3.13)

Since (ζn)n�0 are independent on (τn)n�0 we have

E
(
f

(
ξn+1, ηn+1

))=
N∑

i=1

∫

�

f
(
qζn+1

(
�ηn+1(�τn+1, ξn)

)
, ηn+1

)
1{ω:ηn=i}dP.

On the other hand, since �τn+1 and ζn+1 are independent on ηn+1, ηn

and ξn we obtain

E
(
f

(
ξn+1, ηn+1

)) =
∫

X×I

N∑

j=1

∫ ∞

0

∫

S

f
(
qs

(
�j(t, x)

)
, j

)
pij (x)λe−λt

×κ(ds) dt µn(dx di).

Now, using notation (3.12) we can write

E
(
f

(
ξn+1, ηn+1

))=
∫

X×I

Uf (x, i)µn(dx di)= <Uf,µn > . (3.14)

Further, simple calculation shows that:

(i) Uf �0 for f ∈B(X × I ) and f �0;

(ii) U1X×I =1X×I ;

(iii) Ufn ↓0 for fn ∈B(X × I ) and fn ↓0;

(iv) Uf ∈C(X × I ) for f ∈C(X × I ).
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Therefore by ref. 18 there exists a Feller operator P such that

<Uf,µn >=<f,Pµn > for f ∈B(X × I ) and µ∈M1(X × I ).

(3.15)

By (3.13), (3.14) and (3.15) for arbitrary A∈B(X × I ) we have

µn+1(A)= <1A,µn+1 > = <U1A,µn > = <1A,Pµn > =Pµn(A),

which proves condition (3.10). Moreover, by (3.15) and (3.12) we have

Pµ(A) = <1A,Pµ> = <U1A,µ>

=
N∑

j=1

∫

X×I

∫ ∞

0

∫

S

λe−λt1A

(
qs

(
�j(t, x), j

))
pij (x) κ(ds) dt µ(dx di),

which completes the proof.

4. LEMMAS

Lemma 4.1. Assume that the system (�,q,p) satisfies conditions
(3.1)–(3.7). Moreover assume that

LLq + α

λ
<1, (4.1)

where L, Lq and α are constants appearing in conditions (3.6), (3.7) and
λ is the intesivity of the Poisson process which governs the increment �τn

of random variables (τn)n�0. Then the operator P given by (3.11) is essen-
tially nonexpansive.

Proof. Let w ∈ �0 be given by condition (3.4). Let ϕ ∈ � be such
that inequality (2.5) holds with

a = λLLq

λ−α
. (4.2)

Since a <1 (see (4.1)), ϕ exists by virtue of Proposition 2.3.
Let c∈R+ be such that

ϕ(c)>2 (4.3)
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and let ρ be given by (3.8) and (3.9).
Fix f ∈Fϕ . To complete the proof it is enough to show that

|Uf (x, i)−Uf (y, j)|�ϕ(�((x, i), (y, j))), for (x, i), (y, j)∈X × I,

(4.4)

where the operator U is given by (3.12). From (3.9) and (4.3) it follows
that (4.4) holds if i �= j .

By (3.12) and the last inequality we have

|Uf (x, i)−Uf (y, i)|

�
N∑

j=1

∫ +∞

0

∫

S

λe−λt |f (
qs

(
�j(t, x)

)
, j

)
pij (x)

−f
(
qs

(
�j(t, y)

)
, j

)
pij (y)|κ(ds)dt

�
N∑

j=1

|pij (x)−pij (y)|

+
N∑

j=1

∫ +∞

0

∫

S

λe−λtpij (y)ϕ
(‖qs

(
�j(t, x))−qs(�j (t, y)

)‖)κ(ds)dt

and using in turn (3.4), (2.4), the Jensen inequality and finally (3.7), (3.6)
and (2.5) we obtain

|Uf (x, i)−Uf (y, i)|

� ω(‖x −y‖)+
∫ +∞

0

∫

S

λe−λtϕ




N∑

j=1

pij (y)‖qs

(
�j(t, x)

)−qs

(
�j(t, y)

)‖


κ(ds)dt

� ω(‖x −y‖)+ϕ




N∑

j=1

∫ +∞

0

∫

S

λe−λtpij (y)‖qs

(
�j(t, x)

)−qs

(
�j(t, y)

)‖κ(ds)dt





� ω(‖x −y‖)+ϕ




∫ +∞

0
λe−λt

N∑

j=1

pij (y)Lq‖�j(t, x)−�j(t, y)‖dt





� ω(‖x −y‖)+ϕ

(
λLLq‖x −y‖

∫ +∞

0
e(α−λ)t dt

)

= ω(‖x −y‖)+ϕ(a‖x −y‖)�ϕ(‖x −y‖),

which completes the proof.
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Lemma 4.2. Suppose that hypotheses of Lemma 4.1 hold. Then
there exists a bounded set A⊂X × I such that

inf
µ∈M(X×I )

lim inf
n→∞ P nµ(A)>0.

Proof. Put

V (x, i)=‖x‖ for (x, i)∈X × I.

Claim. There exist a, b∈R+, a <1, such that

UV (x, i)�aV (x, i)+b for (x, i)∈X × I. (4.5)

Indeed, using (3.12) and the definition of V we have

UV (x, i) =
N∑

j=1

∫ +∞

0

∫

S

‖qs(�j (t, x))‖λe−λtpij (x)κ(ds)dt

�
N∑

j=1

∫ +∞

0

∫

S

‖qs(�j (t, x))−qs(�j (t, x∗))‖λe−λt

×pij (x)κ(ds)dt

+
N∑

j=1

∫ +∞

0

∫

S

‖qs(�j (t, x∗))‖λe−λtpik(x)κ(ds)dt,

where x∗ is given by (3.3).
Further, using (3.7) and then (3.6) we obtain

UV (x, i) �
N∑

j=1

∫ +∞

0
λe−λt

[∫

S

‖qs

(
�j(t, x)

)−qs

(
�j(t, x∗)

)‖κ(ds)

]
pij (x)dt

+
N∑

j=1

∫ +∞

0
λe−λt

[∫

S

‖qs

(
�j(t, x∗)

)−qs(x∗)‖κ(ds)

]
pij (x)dt

+
∫ +∞

0
λe−λt

[∫

S

‖qs(x∗)‖κ(ds)

]
dt
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�Lq

∫ +∞

0
λe−λt

N∑

j=1

pij (x)‖�j(t, x)−�j(t, x∗)‖dt

+Lq

N∑

j=1

∫ +∞

0
λe−λtpij (x)‖�j(t, x∗)−x∗‖dt +

∫

S

‖qs(x∗)‖κ(ds)

�λLLq

∫ +∞

0
e(α−λ)t dt · ‖x −x∗‖+ b̃=a‖x −x∗‖+ b̃

�a‖x‖+b,

where a is given by (4.2),

b̃=λLq

N∑

j=1

∫ +∞

0
e−λtpij (x)‖�j(t, x∗)−x∗‖dt +

∫

S

‖qs(x∗)‖κ(ds)

and

b= b̃+a‖x∗‖.

From (3.3) and the fact that q(·, x∗) is a bounded function, it follows
that b is finite. Since a <1 the proof of the Claim is complete.

From (4.5) it follows that

UnV (x, i)�anV (x, i)+ b

1−a
for (x, i)∈X × I.

Let µ∈M1(X× I ) be given and let K ⊂X× I be a compact set such
that µ(K)�1/2. Define µ̄(B)=µ(B ∩K) for B ∈B(X × I ). Further let

A={(x, i)∈X × I :V (x, i)�d},

where d =4b/(1−a). From the Chebyshev inequality it follows that

P nµ(A)�P nµ̄(A)� 1
2

− 1
d

∫

X×I

V dP nµ̄

and consequently

P nµ(A) � 1
2

− 1
d

(
an

∫

X×I

V dµ̄+ b

1−a

)

� 1
4

− an

d

∫

X×I

V dµ̄.
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Since the support of µ̄ is compact, the last integral is bounded and the
statement of Lemma 4.2 follows.

Lemma 4.3. Under the assumptions of Lemma 4.1 the operator P

given by (3.11) is semi-concentrating.

Proof. Define

E(P )=
{
ε >0 : inf

µ∈M1
lim inf
n→∞ P nµ(A)>0 for some A∈Cε(X × I )

}
.

To complete the proof it is sufficient to show that inf E(P )= 0. Suppose,
on the contrary, that ε̃ = inf E(P ) > 0. Let α be given by condition (3.6).
We consider two cases: α <0 and α �0.

Case I. Suppose first that α <0. By Lemma 4.2 there exist x0 ∈X and
r >0 such that

inf
µ∈M1(X×I )

lim inf
n→∞ P nµ

(
B(x0, r)× I

)
>0. (4.6)

Fix t∗ >0 such that

ε =3rLLqeαt∗ <ε̃ (4.7)

and set

Cε =
N⋃

j=1

⋃

t∈[t∗,2t∗]

⋃

s∈S

(
B

(
qs(�j (t, x0)

)
,

2ε

3

)× I

)
.

Observe that Cε ∈Cε.
According to (3.11), for arbitrary µ∈M1(X × I ) we have

P n+1µ(Cε)

=
N∑

j=1

∫

X×I

∫ +∞

0

∫

S

1Cε (qs(�j (t, x)), j)λe−λt

×pij (x)κ(ds)dtP nµ(dx di). (4.8)

Let x ∈B(x0, r) and t > t∗ be fixed. Since
∑N

j=1 pij (x)= 1, from (3.6)
it follows that there is j ∈ I (depending on x and t) such that

‖�j(t, x)−�j(t, x0)‖�Leαt‖x −x0‖. (4.9)
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Further, by (3.7)

∫

S

‖qs

(
�j(t, x)

)−qs

(
�j(t, x0)

)‖κ(ds)�Lq‖�j(t, x)−�j(t, x0)‖.

From the last inequality it follows that

κ
(
S(x, t; j)

)
�1/2,

where

S(x, t; j) = {
s ∈S :‖qs

(
�j(t, x)

)−qs

(
�j(t, x0)

)‖
� 2Lq‖�j(t, x)−�j(t, x0)‖

}
.

For s ∈S(x, t; j) with x ∈B(x0, r) and t > t∗ by (4.7) and (4.9) we have

‖qs

(
�j(t, x)

)−qs

(
�j(t, x0)

)‖ � 2Lq‖�j(t, x)−�j(t, x0)‖
� 2LLqeαt‖x −x0‖�2ε/3.

This means that for every x ∈B(x0, r) and t > t∗ there is j ∈ I such that

(
qs(�j (t, x)), j

)∈Cε

and consequently

N∑

j=1

1Cε (qs(�j (t, x)), j)�1.

From (4.7) it follows that

P n+1µ(Cε) �
∫

B(x0,r)×I

∫ 2t∗

t∗

∫

S

λe−λtpij (x)κ(ds)dtP nµ(dx di)

� γ

2
e−λt∗(1− e−λt∗) ·P nµ

(
B(x0, r)× I

)
,

where γ is given by (3.5). From (4.6) and the last inequality it follows that

inf
µ∈M1(X×I )

lim inf
n→∞ P nµ

(
Cε

)
>0,

which contradicts to the fact that ε̃ = inf E(P ). Consequently ε̃ =0.
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Case II. Suppose now that α � 0. Then by (4.1) we have LLq < 1.
Choose σ >0 and t∗ >0 such that

(1+σ)LLqeαt∗ <1.

Finally choose ε0 >ε̃ such that

ε = (1+σ)LLqeαt∗ε0 <ε̃.

By the definition of E(P ) there is A∈Cε0 such that

β = inf
µ∈M1(X×I )

lim inf
n→∞ P nµ

(
A)>0. (4.10)

We may assume that

A=
m⋃

k=1

(
B(xk, ε0)× I

)
. (4.11)

Now we define

Cε =
N⋃

j=1

⋃

t∈[0,t∗]

⋃

s∈S

m⋃

k=1

(
B

(
qs(�j (t, xk)),

2ε

3

)× I

)
.

Let µ∈M1(X×I ) be arbitrary. From (4.10) and (4.11) it follows that
there is kn ∈{1, . . . ,m} such that

P nµ
(
B(xkn, ε0)× I

)
� β

m
. (4.12)

Further, from (3.6) it follows that for every xkn ∈X and t ∈R+ there is j ∈I

(depending on xkn and t) such that inequality (4.9) with xkn in place of x0,
holds. Simple calculation shows that

κ
(
S(x, t, j, σ )

)
� σ

1+σ
,

where

S(x, t; j, σ ) = {
s ∈S :‖qs

(
�j(t, x)

)−qs

(
�j(t, xkn)

)‖
� (1+σ)Lq‖�j(t, x)−�j(t, xkn)‖

}
.
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Argument similar to that of case I gives

P n+1µ(Cε)� γ σ

1+σ

∫ t∗

0
λe−λtdt ·P nµ

(
B(xkn, ε0)× I

)
.

From the last inequality and (4.12) it follows immediately that

lim inf
n→∞ P nµ

(
Cε

)
� γ σβ

(1+σ)m

(
1− e−λt∗) .

Since µ∈M1(X × I ) was arbitrary and ε < ε̃, this contradicts to the fact
that ε̃ = inf E(P ). Consequently ε̃ =0 and the proof is complete.

5. MAIN RESULTS

Theorem 5.1. Under the hypotheses of Lemma 4.1 the operator P

defined by (3.11) admits an invariant measure.

Proof. By Lemma 4.1 and 4.2 the operator P is essentially nonex-
pansive and semi-concentrating. Thus, the statement of Theorem 5.1 fol-
lows from Proposition 2.2.

Theorem 5.2. Under the hypotheses of Lemma 4.1 the operator P

defined by (3.11) is asymptotically stable.

Proof. By Theorem 5.1 the operator P admits an invariant measure.
By virtue of Proposition 2.1 it is sufficient to show that for ε > 0 there
exists θ > 0 such that for every two measures µ1,µ2 ∈ M1(X × I ) there
exist a Borel measurable set A ⊂ X × I with diam A < ε and an integer ñ

such that

P ñµk(A)� θ for k =1,2.

Since by Proposition 2.2 the set L(M1) is tight, there exists a compact set
K ⊂X × I such that

µ(K)� 4
5

for every µ∈L(M1).

Let α be given by condition (3.6). Analogously as in the proof of Lemma
4.3 we consider two cases: α <0 and α �0.
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Case I. Suppose first that α < 0. Let ε > 0 be fixed. Choose t∗ ∈ R+
such that

LLqeαt∗ diam K <
ε

4
, (5.1)

where L, Lq are given by conditions (3.6) and (3.7), respectively.
Define

KX ={
x ∈X : (x, i)∈K for some i ∈ I

}

and

K∗
X =

N⋃

j=1

�j(t∗,KX).

Clearly KX and K∗
X are compact subsets of X. For s̃ ∈S define

V (s̃)=
{
s ∈S :‖qs(y)−qs̃(y)‖<

ε

12
for every y ∈K∗

X

}
. (5.2)

Since V (s̃) is an open neighborhood of s̃ and S is a compact space, there
exists a finite set {s1, . . . , sm} such that S =∪m

j=1V (sj ). Set Vj =V (sj ), j =
1, . . . ,m, and define

ϑ = inf
j∈J

κ(Vj ), (5.3)

where

J ={
j ∈{1, . . . ,m} :κ(Vj )>0

}
. (5.4)

Obviously ϑ >0 and
∑

j∈J κ(Vj )�1.
Now for x ∈KX we set

O(x)=
{
z∈KX :‖qs

(
�i(t∗, z)

)−qs

(
�i(t∗, x)

)‖<
ε

12
for s ∈S, i ∈ I

}
,

(5.5)
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where t∗ is given by condition (5.1). Let x1, . . . , xm0 ∈KX be such that K ⊂
G, where

G=
m0⋃

l=1

(
O(xl)× I

)
. (5.6)

Note that G is an open subset of X × I . By compactness and continuity
there exists t̂ > t∗ such that

‖qs

(
�i(t, x)

)−qs

(
�i(t∗, x)

)‖<
ε

12
, (5.7)

for every i ∈ I , s ∈S, x ∈KX and t ∈ [t∗, t̂ ].
Let µ1, µ2 ∈ M1(X × I ) be arbitrary. Set µ = (µ1 + µ2)/2. Since

L(µ) �=∅ (see Proposition 2.2) there exists a sequence (nk)k�1 and a mea-
sure ν ∈L(µ) such that P nkµ→ν (weakly). Since ν(G)�4/5 by the Alex-
androv Theorem there exists n0 ∈N such that

P n0µ(G)� 3
4
.

Consequently,

P n0µk(G)� 1
2

for k =1,2.

Therefore there exists l1, l2 ∈{1, . . . ,m0} and i1, i2 ∈ I such that

P n0µk(Vk)� 1
2m0N

for k =1,2, (5.8)

where

Vk =O(xlk )×{ik}, k =1,2.

From condition (3.6) it follows that there is an i0 ∈ I such that

‖y1 −y2‖�Leαt∗‖xl1 −xl2‖, (5.9)

where

y1 =�i0(t∗, xl1), y2 =�i0(t∗, xl2).
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Moreover, from condition (3.7) it follows that there exists S0 ⊂ S with
κ(S0)>0 such that

‖qs(y1)−qs(y2)‖�Lq‖y1 −y2‖ for every s ∈S0. (5.10)

Since κ(S0) > 0 there exists an j0 ∈ J such that S0 ∩ V0 �= ∅, where V0 =
V (sj0). Fix s̃ ∈S0 ∩V0. By (5.2), (5.10), (5.9) and (5.1) we have

‖qsj0
(y2) − qsj0

(y1)‖�‖qsj0
(y2)−qs̃(y2)‖+‖qs̃(y2)−qs̃(y1)‖

+ ‖qs̃(y1)−qsj0
(y1)‖� ε

12
+Lq‖y1 −y2‖+ ε

12
� ε

6
+ ε

4
<

ε

2
.

Define

A=
(
B

(
qsj0

(y1),
ε

4

)∪B
(
qsj0

(y2),
ε

4

))×{i0}.

Obviously diam A<ε.
For s ∈V0, x ∈O(xl1) and t ∈ [t∗, t̂ ], using (5.7), (5.5) and (5.2) we have

‖qs

(
�i0(t, x)

) − qsj0
(y1)‖�‖qs

(
�i0(t, x)

)−qs

(
�i0(t∗, x)

)‖
+ ‖qs

(
�i0(t∗, x)

)−qs

(
�i0(t∗, xl1)

)‖+‖qs(y1)−qsj0
(y1)‖

<
ε

12
+ ε

12
+ ε

12
= ε

4
.

This means that

(
qs

(
�i0(t, x)

)
, i0

)∈A for s ∈V0, x ∈O(xl1), t ∈ [t∗, t̂ ]. (5.11)

By (3.11), (5.11), (3.5), (5.3) and (5.8) we have

P n0+1µ1(A)

=
N∑

j=1

∫

X×I

∫ ∞

0

∫

S

1A

(
qs

(
�j(t, x)

)
, j

)
λe−λtpij (x) κ(ds) dt P n0µ1(dx di)

�
∫

V1

∫ t̂

t∗

∫

V0

1A

(
qs

(
�i0(t, x)

)
, i0)

)
λe−λtpii0(x) κ(ds) dt P n0µ1(dx di)

�γ κ(V0)P
n0µ1(V1)

∫ t̂

t∗
λe−λtdt � γϑ

2m0N

(
e−λt∗ − e−λt̂

)
.
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The same argument shows that the last inequality holds for µ2. Since
the constant θ =γϑ(e−λt∗ −e−λt̂ )/(2m0N) does not depend on µ1 and µ2,
the proof of the first case is complete.

Case II. Suppose now that α�0. We introduce some further notation.
Namely, for s∈Sn, i ∈ In and t∈R

n+ (i.e. s= (s1, . . . , sn), t= (t1, . . . , tn) and
i = (i1, . . . , in)) we set

qs = qsn ◦ · · · ◦qs1 ,

(qs ◦�i)(t, x) = qsn

(
�in

(
tn, qsn−1(�in−1(tn−1, . . . ,�i1(t1, x))

))
,

dt = dt1 · · ·dtn,

ds = ds1 · · ·dsn.

Moreover κn stands for the measure on Sn generated by κ (i.e. κn =
κ ⊗· · ·⊗κ︸ ︷︷ ︸

n−times

).

Since α �0 condition (4.1) implies that Lq <1. Let n∈N be such that

Ln
q ·diam K <

ε

12
. (5.12)

By continuity and compactness there exists σ >0 such that

‖(qs ◦�i
)
(t, x)−qs(x)‖<

ε

12
(5.13)

for every i ∈ In, s ∈Sn, t ∈ [0, σ ]n and x ∈KX.
Given s̃ ∈Sn we define

V(s̃)=
{

s ∈Sn :‖qs(x)−qs̃(x)‖<
ε

24
for every x ∈KX

}
. (5.14)

Clearly V(s̃) is an open neighborhood of s̃. Since Sn is compact, there
exists a finite family Vj =V(sj ), j =1, . . . ,m, such that Sn =∪m

j=1Vj . Set

J ={
j ∈{1, . . . ,m} :κn(Vj )>0

}

and

ϑ =min
j∈J

κn(Vj ). (5.15)

Clearly ϑ >0. Given x ∈X we define
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O(x)=
{
z∈X :‖qsj (x)−qsj (z)‖<

ε

12
for j ∈J

}
. (5.16)

Clearly O(x) is an open neighborhood of x. Let x1, . . . , xm0 ∈KX be such
that K ⊂G where G is given by (5.6).

Let µ1,µ2 ∈ M1(X × I ). Let xl1 , xl2 , i1, i2 and O(xl1), O(xl2) be
defined as in Case 1. From condition (3.7) it follows that there exists S0 ⊂
Sn such that κn(S0)>0 and

‖qs(xl1)−qs(xl2)‖�Ln
q‖xl1 −xl2‖ for every s ∈S0. (5.17)

Since S0 is of positive measure, there exists j0 ∈ J such that S0 ∩ V0 �= ∅,
where V0 =V(sj0). Choose s0 ∈S0 ∩V0 and define

A=
(
B

(
qs0(xl1),

ε

4

)∪B
(
qs0(xl2),

ε

4

))×{i0}.

From (5.12) and (5.17) it follows that diam A<ε.
For s ∈ V0, i ∈ In, t ∈ [0, σ ]n and x ∈ O(xlk ) by virtue of (5.13)–(5.16)

we have

‖(qs ◦�i
)
(t, x)−qs0(xlk )‖ � ‖(qs ◦�i

)
(t, x)−qs(x)‖+‖qs(x)−qsj0

(x)‖
+‖qsj0

(x)−qsj0
(xlk )‖+‖qsj0

(xlk )−qs0(xlk )‖<ε.

This means that

(
(qs ◦�i)(t, x), i0)∈A for x ∈O(xlk ), s ∈V0 and t ∈ [0, σ ]n. (5.18)

By (3.11), (5.18), (3.5), (5.15) and (5.8) we have

P n0+nµk(A)

=
∑

i∈In

∫

X×I

∫

R
n+

∫

Sn

1A

(
(qs ◦�i)(t, x)

)
, in

)
λne−λ(t1+···+tn)

×pii1(x)pi1i2(qs1(t, x))

· · · · ·pin−1in (qsn−1(�in−1(tn−1, . . . ,�i1(t1, x)))
)
κn(ds)dt P n0µk(dx di)

�
∫

V1

∫

[0,σ ]n

∫

V0

γ nλne−λ(t1+···+tn) κn(ds)dt P n0µk(dx di)

�γ n

(∫ σ

0
λe−λtdt

)n

κn(V0)P
n0µ1(V1)

� γϑ

2m0N

(
1− e−λσ

)n for k =1,2.

This completes the proof.
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Theorem 5.3. Assume that hypotheses of Theorem 5.1 hold. Then
the sequence (µ̃n) of distributions corresponding to process (ξn)n�0 con-
verges weakly to some distribution µ̃∗ ∈M1(X).

Proof. Let µ̃n be the distribution of ξn. For arbitrary Borel subset
A of X we have

µ̃n(A)=P(ξn ∈A)=P
(
(ξn, ηn)∈A× I

)=µn(A× I ),

where µn is a distribution of random vector (ξn, ηn). By Theorem 5.2 there
exists a measure µ∗ ∈ M1(X × I ) such that µn → µ∗ weakly. Obviously
µ̃n → µ̃∗ (weakly), where µ̃∗ ∈M1(X) is given by

µ̃∗(A)=µ∗(A× I ) for A∈B(X).
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